Naval Research Laboratory

Stennis Space Center, MS 39529-5004

NRL/MR/7440--14-9497

Customized Architecture for Complex
Routing Analysis: Case Study for the
Convey Hybrid-Core Computer

CHRIS J. MICHAEL
ELias Z. Toupr
Davip W. DoBsoN

Geospatial Sciences and Technology Branch
Marine Geosciences Division

February 18, 2014

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
18-02-2014

2. REPORT TYPE

Memorandum Report

3. DATES COVERED (From - To)
01-01-2013 —22-07-2013

4. TITLE AND SUBTITLE

Customized Architecture for Complex Routing Analysis: Case Study for the

Convey Hybrid-Core Computer

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
74-9352-A3

6. AUTHOR(S)

Chris J. Michael, Elias Z. Ioup, and David W. Dobson

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory, Code 7442
Marine Geosciences Division
Stennis Space Center, MS 39529-5004

8. PERFORMING ORGANIZATION REPORT
NUMBER

NRL/MR/7440--14-9497

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Geospatial-Intelligence Agency

7500 GEOINT Drive
Springfield, Virginia 22150

10. SPONSOR / MONITOR’S ACRONYM(S)

NGA

11. SPONSOR / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

For conducting complex routing analysis, FPGAs could prove a worthy candidate over conventional commodity processors if the cost-to-
performance ratio is significant. This report presents the background, experiments, and results of a scaling study that compares the FPGA-based
Convey “Hybrid Core” architecture to a modern conventional high-performance node of equal form factor in performing all-pairs shortest paths
on networks of streets. Results show that the Convey system is able to yield a result over 5 times faster for a graph of 3 million nodes. Moreover,
there is still significant room for further optimization, while the conventional system implementation is optimized to the point of diminishing returns.

15. SUBJECT TERMS

Computer architecture Navigation
Routing High performance computing
Graph processing Scaling
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT Chris J. Michael
a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area
Unclassified Unclassified Unclassified Unlimited code)
Unlimited Unlimited Unlimited (228) 688-4955

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Customized Architecture for Complex Routing Analysis:
Case Study for the Convey Hybrid-Core Computer

1 Abstract

Because conventional commodity processors, though inexpensive, do not implement
the best architecture to exploit complex routing analyses, customized architecture
via FPGAs (Field Programmable Gate Arrays) could prove a worthy candidate if the
cost-to-performance ratio is significant. In this report, the Naval Research
Laboratory (NRL) will present the background, experiments, and results of a scaling
study that compares the FPGA-based Convey “Hybrid Core” architecture to a
modern conventional high-performance node of equal form factor in performing all-
pairs shortest paths (APSP) on graphs representing routing networks of streets. The
results will help determine cost/performance return for graph algorithms operating
on large routing networks using the Convey architecture.

Results show that a highly optimized APSP implementation written in C on a
conventional system does not scale well for graphs larger than 1 million nodes,
while a moderately optimized Convey implementation scales well for these and
larger graphs, presumably scaling up to 10 million nodes. The Convey APSP
implementation is able to yield a result over 5 times faster for the largest tested
input graph of 3 million nodes. Moreover, there is still significant room for further
optimization on the Convey implementation while the conventional system
implementation has already been optimized to the point of diminishing returns.

2 Experimental Framework

2.1 Hardware Specification

We chose a conventional “baseline” system optimized for memory bandwidth and a
fairly recent mid-range Convey system. The baseline system is housed at NRL-
Stennis and the Convey system is housed at Convey Computer in Richardson, TX.

2.1.1 Baseline
Table 1: Baseline System Specs
Node
Model Dell PowerEdge
Rack Size 2U
Number of Sockets 4
System Bus Interconnect HyperTransport
Memory Type DDR3 1600MT/s
Capacity 32 DIMM X 16GB =512 GB
Socket (4 total in system)
Number of Processors 2
CPU Interconnect HyperTransport

Processor (8 total in system)

Manuscript approved October 7, 2013.

Model AMD Opteron 6276
Number of Cores 8 (64 total in system)
Clock 2.3GHz
Line Size 64B (16 words)
L1 I-Cache Size 256KB (64KB/2 cores)
Cache L1 D-Cache Size 128KB (16KB/core)
L2 D-Cache Size 8MB (2MB/2 cores)
L3 D-Cache 8MB shared*

2.1.2 Convey Hybrid Core
Table 2: Convey System Specs

Node
Model Convey HC-2ex
Rack Size 2U
Number of Sockets 6
System Bus Interconnect QPI
Host Type DDR3 1600MT/s
Memory Capacity 192 GB
Coproc Type Scatter-Gather DIMM
Memory Capacity 64 GB
Host Processor (2 total in system)
Model Intel Xeon X5670
Number of Cores 6
Clock 2.93GHz
Coprocessor (4 total in system)
Model | Xilinx Virtex-6 LX760

2.2 Benchmark Application

A benchmark application has been developed both on the baseline system and on
the Convey system. Each benchmark performs APSP and has the same input and
output. The internal processing of each benchmark differs due to the distinct
architectural differences between the baseline system and the Convey system.

2.2.1 Input

The input graphs used for the study are all directed weighted graphs extracted from
NAVTEQ data. A Node in the graph either represents a street intersection or a dead-
end. Edges represent adjacent connectivity between two neighboring intersections.
The edge weight represents the distance between the two intersections. Nodes in
the final routing graph correspond to the REF_IN_ID and NREF_IN_ID unique
intersection IDs in the attributes of each feature in the NAVTEQ Streets layer. The
value of the DIR_TRAVEL attribute determines whether the connection will be bi-
directional or one way. Note that we do not retain or exploit any geospatial
information such as coordinates. Also note that the NAVTEQ Z-Levels layer is
essential for constructing these routing networks correctly.

G4

Gl

G2

G3

Figure 1: Routing Network Regions

The graph sizes of the data sets were chosen to be manageable while providing a
good sense of performance scaling. Each set is taken from the western part of the
US. Figure 1 shows the bounding boxes of each input graph. Each graph is stored in
a text file, each line of which corresponds to an edge of the graph. Each line contains
the source ID, destination ID, and an edge weight representing the traveling distance
between the corresponding intersections. Each dataset roughly increases by an
order of magnitude for N2, where N is the number of vertices in the graph.

Some preprocessing is performed on the input to optimize execution without
changing results. Node IDs are reassigned (from NAVTEQ intersection IDs) as
contiguous numbers starting from zero, which allows for better performance and
memory contiguity. This transformation is reversible with minimal bookkeeping.
Additionally, duplicate edges, which exist profusely in the NAVTEQ data set, are
removed.

2.2.2 C Implementation (Conventional Multicore)

In early experimentation, it was found that static compressed adjacency list
representations such as compressed sparse row (CSR) improved performance
significantly for APSP on graphs representing routing networks. Therefore, the
input graph is implemented using CSR for the purposes of this study. This
implementation has a much greater potential to exploit spatial and temporal locality
due to its compact and contiguous memory footprint. For graphs over 10,000
nodes, we have found that implementing a CSR rather than an adjacency list can
speed execution of APSP over 10 times.

Dijkstra’s algorithm, the chosen algorithm for the study, requires a priority queue to
keep track of intermediate path distances. For our implementation, we chose to use
a referenced binary heap like the one shown in the Figure 2.

Nedel |

Node 2

Node 3
Node 4 /,-""/."

/
v ¥ P
// N\ "./ N\,
(20) {as)

\ /
N/ N

Figure 2: Referenced Binary Heap

Building the heap requires O(N log N) time. An enqueue or dequeue operation
occurs in O(log N) time, which is optimal among other priority queue
implementations. Dijkstra’s algorithm requires updates to distances in the queue
referenced by the node IDs. Due to the reference look-up table, the queue can be
updated in constant time. Having this table does not impart a detrimental memory
overhead for the given input sets and can speed up processing by one order of
magnitude for graphs over 10,000 nodes.

The interface for this implementation is as follows.
int dijkstra(graph, src, dist, pred)

Graph is a pointer to the CSR representation of the input graph, src is the ID of the
source node, the return value dist is a pointer to the N-sized list of calculated
distances, and the return value pred is a pointer to the N-sized list of shortest-path
predecessors (all full shortest paths can be constructed by traversing the
predecessor’s list). The method’s return value is the average single-source shortest
path length for the given source node.

One instance of dijsktra is run as a separate OpenMP thread for each node in the
graph. A single instance of the input graph is shared among all threads, and each
thread will allocate both its N-sized result lists as well as its N-sized priority queue.
All threads reduce to a sum accumulator so that the average APSP length for the
graph may be calculated. Once the result is accumulated, dist and pred are
deallocated.

2.2.3 Hybrid Threading Implementation (Convey HC2-ex)

The Convey Hybrid Threading (HT) toolkit is a development environment that
enables Convey personalities to be developed using C++. The toolkit allows for easy
integration between the Intel general-purpose host processors and the Convey
FPGA coprocessors by providing one programming environment for
implementation on both processor architectures.

The HT benchmark also uses a CSR to represent the graph, and all other input and
output data structures of the HT benchmark match those of the C benchmark
implementation. The interface is the same as that of dijkstra described above.
However, due to design time constraints and the specialized Convey architecture,
we chose to implement a modified version of the Bellman-Ford (BF) APSP
algorithm. Though the BF algorithm requires significantly more edge traversals, it
does not require a priority queue. Additionally, it has the potential to use memory
bandwidth more effectively.

Node ID
Coprocessor Unit
’ Mutex

Visited List
Update

Neighbor ID

X
S

Output Update

Figure 3: Diagram of HT APSP Implementation

In the HT implementation, the conventional host processor must first copy the input
graph to the coprocessor’s memory. Once this is done, the application instantiates a
thread manager (shown as CTL in Figure 3) to begin issuing threads to units, or
FPGA coprocessor cores. One thread will be issued per source node in the input
graph, and each unit has memory allocated for dist, pred, and a working list for BF.
Each unit contains multiple list processors that dispatch vertices in the working list.
When a vertex is dispatched, it spawns a thread for each outgoing edge onto a vertex
processor that is responsible for calculating new distances and updating the result.
Once a unit is done executing its BF instance, it copies its full result to the host.

The heart of the HT implementation is the vertex processor. The HC-2ex can
support a very large amount of vertex processor threads to be in flight at any given
time. The personality was designed this way in order to maximize memory
throughput. However, this causes a semaphore in the algorithm: Two threads
running on vertex processors may read and update path lengths to the same vertex
incorrectly. Because of this, we have implemented a mutex (mutual exclusion) that
allows a thread to lock a node before modifying it exclusively. Because we are
dealing with sparse graphs where the average in-degree is 2, the overhead involved
with the mutex is trivial.

3 Results

Table 3: Results Baseline vs. Convey

Wall Time S
. peedup
Nodes Edges CSR Size (MB) Baseline Convey (Convey)
G1 124543 297966 3 149 134 1.11
G2 509099 | 1241122 12 3657 2138 1.71
G3 1253148 | 3047625 30 76785 24519 3.13
G4 3636185 | 9138912 88 718803 | 139628 5.15
Scaling: Baseline vs. Convey
9000 T r
Baseline ——
& 8000 | Convey —— |
E_ 7000 |
E 6000 |
=
™~ 5000
1]
g 4000
g L
a
S 3000 |
£
H 2000 r
O
)
“ 1000 G
0 1 L 1 1 1 1 L
0 10 20 30 40 50 60 70 80 90

Input CSR Size (MB)
Figure 4: Results for Scaling

See Table 3 and Figure 4 above for the scalability results. The baseline system ran
Dijkstra’s algorithm benchmark with 64 threads. The Convey system ran the
parallel BF algorithm benchmark with 64 units. Each unit has one list processor and
64 vertex processors.

The performance of the baseline system begins to suffer dramatically once the input
data graph size exceeds 12MB, or 500,000 nodes. This is mainly due to poor cache
performance, since both spatial locality and temporal locality diminish as the input
graph reaches this size. After this point, there is a significant constant-factor
overhead due to the memory inefficiency that causes the algorithm to scale poorly.

Conversely, the Convey implementation scales better as the input size gets larger.
Larger input sizes help to better saturate the outstanding loads and therefore the

memory throughput of the system. In the largest graph we examined, the Convey
system outperformed the baseline system by over five times. Projecting the results
towards the target graph of 10 million nodes (300MB input size), the Convey system
is expected to maintain 5.2 times speedup, assuming it can accommodate the larger
output size. For this graph size, the baseline system is projected to complete the run
in 99 days, while it will take the Convey system 19 days.

4 Conclusion

It has been shown that for large routing networks on the order of millions of nodes,
the Convey system can perform over 5 times better than a conventional multicore
system of similar form factor. Moreover, the APSP algorithm used for the
conventional system is a highly optimized and targeted algorithm, while the Convey
system implementation has plenty of room for optimization of memory throughput.
With optimizations to the algorithm and memory performance, we feel that a
refined and optimized Convey HT implementation may reach an order of magnitude
speedup within 6-months of development. Though more optimizations may be
applied to the conventional implementation, the wasted memory bandwidth due to
random-access memory is the biggest bottleneck and any significant performance
gain is not to be expected.

Appendices

A.1 Background

In order to better understand why APSP graph algorithms perform better on
Convey’s architecture, we briefly present some background in graph algorithms and
computer architecture relevant to this study. For further reading, please refer to the
final Further Reading section of this appendix.

A.1.1 Graph Algorithms

There are two common ways to represent an edge-weighted directed graph in a
data structure. An adjacency list keeps a record for every node in the graph. Each
record contains a list of nodes adjacent to the corresponding node, and each
element in the list has a value representing the corresponding edge weight. The
adjacency list requires O(N+E) entries, where N is the number of nodes in the graph
and E the number of edges. An adjacency matrix contains an entry for each possible
edge in the matrix. The adjacency matrix consists of O(N2) entries for edge weights.
Though this storage requirement can be overwhelming for large graphs, only a very
small percentage of the entries are used for a sparse graph. Therefore, compressed
adjacency matrix representations such as compressed sparse row (CSR) can greatly
reduce the size of sparse graphs, only requiring size O(N+E). In implementation,
CSR representations are typically smaller than adjacency list representations
because CSR does not require the storage of pointers; however, CSR representations
are, for the most part, immutable.

The Bellman-Ford algorithm computes the single-source shortest paths for a
directed weighted graph. The algorithm relaxes, or traverses through, each edge in
the graph up to N times. The result contains the shortest paths and weights of these
paths from a given source node to all other reachable nodes in the graph. The
Bellman-Ford algorithm runs in O(NE) time.

Dijkstra’s algorithm computes the single-source shortest paths for a directed
weighted graph containing no negative-weighted cycles. The algorithm relaxes
edges similarly to breadth-first search, and each edge is only relaxed once. The
algorithm requires a priority queue to keep track of intermediate shortest-path
lengths. When the priority queue is implemented as a binary heap, Dijkstra’s
algorithm can run in O(N log N) time. The result matches that of the Bellman-Ford
algorithm.

A.1.2 Computer Architecture

Modern processors for high-performance computing exhibit a hierarchical memory
layout in order to mitigate the high latency associated with requesting off-CPU
memory. This hierarchy consists of multiple levels of caches that reside between
physical memory and the CPU. Though these caches reflect a relatively small subset
of off-CPU memory, they provide access to this memory up to 100 times faster.
Caches greatly enhance the performance of algorithms that exhibit temporal locality
and spatial locality. Temporal locality is the behavior of accessing a memory

location multiple times within a short duration. Spatial locality is the behavior of
accessing separate memory locations that are nearby one another.

Processors for high-performance computing almost always exhibit multiple CPUs,
commonly referred to as cores. Each CPU has the ability to execute its own separate
program, but it must share memory space with other CPUs. In order to facilitate
communication across multiple CPUs, a parallel programming paradigm is essential.
OpenMP is a widely utilized and robust API that efficiently implements such a
paradigm. Applications using OpenMP conduct thread management to assure that
all CPUs are busy running threads.

Field Programmable Gate Arrays (FPGAs) are packaged integrated circuits that can
be reconfigured using a hardware description language such as Verilog. Current
state-of-the-art FPGAs can handle enough programmable logic to leverage special-
purpose computing that can compete or outperform conventional processors. This
is especially true for problems that don’t require either a large arithmetic capacity
or complex control.

The Convey HC-2ex “Hybrid Core” computer is a high performance computing
architecture that consists of a conventional host processor paired with a completely
reconfigurable Field-Programmable Gate Array (FPGA) coprocessor. Though the
coprocessor has a separate physical memory space, it shares the virtual memory
address space with that of the host processor so that a parallel programming
paradigm may be effectively implemented. The coprocessor does not implement a
cache out of the box and has a customized memory interface and interconnect to
facilitate high bandwidth and low latency.

The Convey coprocessor implements a basic instruction set architecture to facilitate
transactions with the host processor. The Convey Personality Development Kit
(PDK), a Verilog-based design environment, is used to implement a custom-
designed computer architecture, or personality, to consume these instructions and
special custom instructions described by the designer. The PDK offers full access to
the special coprocessor memory interconnect interface, but it is up to the designer
to make effective use of it. To ease in the design of personalities, Convey develops
Hybrid Threading (HT) toolkit that allows for the generation of pipelined and
threaded personalities from a software (C/C++) interface.

A.2 Performance of Oracle Spatial

Oracle Spatial is a proprietary product developed as a solution for supporting and
managing geospatial data. It is a separately licensed component of the Oracle
Database. The extensions provided by the component optimize storage and querry
support for abstract graphs and spatial networks as well as geometry objects
including points, lines, and polygons. Oracle Spatial also provides a Java API for
accessing and performing operations on the stored data.

There are several methods provided in the Oracle Spatial API for calculating single-
source shortest paths to all connected nodes. The most efficient method for
calculating this on a relatively large and sparse abstract graph is the ShortestPaths
function in the Java APIL. Oracle Spatial has the ability to optimize the operation for a
spatial network, but this functionality is not covered in this report.

Table 4: Oracle Spatial Performance

10, Hawaii 7, Northeast US
Threads | Native(s) | DB(s) | Threads | Native(s) DB
1 231 19744 1 328024 N/A
8 41 2968 8 56556 N/A
16 22 1434 16 38206 N/A
32 11 734 32 17922 N/A
64 8 513 64 12350 N/A

Results for the total execution time required for completion of both the C APSP
benchmark Native and the Oracle Spatial benchmark DB are shown in Table 4 for
NAVTEQ Regions 10 (Hawaii, 41k nodes) and 7 (NE US, 1M nodes). (Note that this
study was conducted with the internal NAVTEQ partitioning which limited graphs to
be no more than 500k nodes. Z-Levels are needed to calculate the true routing
graphs.) These benchmarks were both run on the conventional system described in
the main section of this study. Both native and DB scale well for the given input, but
the native benchmark is consistently over 60-times faster than DB. This is mainly
due to the overwhelming amount of memory required for Oracle Spatial. The
smallest run for DB on region 7 would take 3 days to complete, so these results were
omitted due to lack of time and allocation on the system. This overwhelming
increase in completion time is mainly due to the multiple-orders-of-magnitude
increase in the amount of memory DB requires. See Table 5 for memory usage
statistics.

Table 5: Oracle Spatial Memory Usage

Hawaii
Threads | Native(MB) | DB(MB)
1 1 1600
8 8 3169
16 16 5430
32 31 11913
64 62 12321

10

	Blank Page

